Unlocking FileVault

An analysis of Apple's disk encryption system

Jacob Appelbaum <jacob@appelbaum.net> Ralf-Philipp Weinmann <ralf@coderpunks.org>

@23C3 (52°31'14.48"N, 13°24'59.51"E)

2006-12-29

What's this about?

- What is FileVault? Why use FV?
- Practical problems with FileVault
 - Known and unknown attacks against FV
- Reversing on OS X
 - DiskImages Framework
- FileVault crypto details
 - A free implementation
- OSX oddities and more
 - PRNG, swap, sleep images, DMA attacks
- Special guest Hacker Happily Hacking!

Motivation

- General interest in disk cryptography
- Personal data retention
- Protection against theft
- Everyone uses laptops
- Undocumented. Is it secure? How does it work?

The marketing side

 "FileVault secures your home directory by encrypting its entire contents using the Advanced Encryption Standard with 128-bit keys. This high-performance algorithm automatically encrypts and decrypts in real time, so you don't even know it's happening."

FileVault Increased security for your computer.

... but we do want to know what's happening!

- Internals are not (well) documented
 - Exception: man page for hdiutil(8)
- DiskImages framework is private (no src, no headers)
 - /System/Library/PrivateFrameworks/ DiskImages.Framework
- Kernel module not open-sourced

DiskImages framework

- Modular architecture, supports plugins
 - hdiutil plugins
- third-party plugin known: VirtualPC disk images
- helpers: diskimages-helper, hdiejectd
- hdiutil(8): CLI "front-end"
- IOHDIXController kernel module does inkernel attach and encryption/decryption (shows up as

com.apple.AppleDiskImageController)

DiskImages framework (2)

- Backing stores:
 - CBSDBackingStore
 - C{RAM,Carbon,Dev,CURL,Vectored}BackingStore
- Encodings
 - CEncryptedEncoding
 - C{MacBinary,AppleSingle,UDIF,SegmentedNDIF,SegmentedUDIF,SegmentedUDIFRaw}Encoding
- Shadowed images, compressed images, sparse images, message digests on images

Crypto details

 Blocks get encrypted in 4kByte "chunks" AES-128, CBC mode

IV := trunc₁₂₈(HMACSHA1(hmac-key || chunkno))

- Keys are encrypted ("wrapped") in header of disk image
- Wrapping of keys done using 3DES-EDE
- Two different header formats (v1, v2)
- Version 2 header: support for asymmetrically (RSA) encrypted header

Crypto details / implementation

- Login password used to derive key for unwrapping
 - PBKDF2 (PKCS#5 v2.0), 1000 iterations
- Crypto parts implemented in CDSA/CSSM
 - DiskImages has own AES implementation, pulls in SHA-1 from OpenSSL dylib
- "Apple custom" key wrapping loosely according to RFC 2630 (PKCS#7, section 12.6)

- in Apple's CDSA provider (open source)

Recovery mechanism

- When enabling FileVault, you can set a master password
- Master password protects FileVault recovery keychain
 - /Library/Keychains/
 FileVaultMaster.keychain
- Recovery keychain contains 1024 bit RSA key
- However, beware: 1024 bit RSA modulus ≈ 72 bit symmetric key (Lenstra-Verheul heuristics)

Headers / versions

- V1 "headers" live at the <u>end</u> of the file
- V2 headers live at the beginning
- "Version is the default for non-sparse images. As of OS X 10.4.7, sparse, encrypted images will always use version 2." (hdiutil man page)
- Meta data at end of the image can lead to "bad" things when compacting.

Password header for version 2

```
uint32 t kdf algorithm;
uint32 t kdf prng algorithm;
uint32 t kdf iteration count;
uint32 t kdf salt len; /* bytes */
uint8 t kdf salt[32];
uint32 t blob enc iv size; /* bytes */
uint8 t blob enc iv[32];
uint32 t blob enc key bits; /* bits */
uint32 t blob enc algorithm;
uint32 t blob enc padding;
uint32 t blob enc mode;
uint32 t encrypted keyblob size;
uint8 t encrypted keyblob[0x30];
```

Reversing Private Frameworks

- full signatures for C++ code, e.g.:
 - CEncryptedEncoding::decodePasswordHeader(Security::CssmData const&, CEncryptedEncoding::PasswordHeader const&)
 - CEncryptedEncoding::decodePrivateKeyHeader(__CFString const*, CEncryptedEncoding::PrivateKeyHeader const&)
 - CEncryptedEncoding::decodeV1Header(Security::CssmData const&, CEncryptedEncoding::V1Header const&)
 - CEncryptedEncoding::decrypt(long long, long long, void*)
- Analysis done using gdb, hdiutil debug output and otool disassemblies
- Would've liked to use the Boomerang reverse compiler...
 - Worked somewhat after a little patching; not used though. Lots of more work to fix it...

Results?

- vfdecrypt
 - Input encrypted dmgs, output decrypted dmgs
 - Works for Version 1 and Version 2 encrypted dmgs
 - Encrypted sparse disk images: only outer layer will be stripped (encryption); still a sparse disk image inside.
 - Very rough code at the moment, but works.
- Cryptographic security depends on more than just AES-128, it's rather
 3DES effective 112bit || AES-128 || RSA-1024

Why we'd like FDE

- Since only \$номе is encrypted, all other data is still unprotected.
- Think /tmp, log files: /var/log, /System/Logs
- We'd like to have full disk encryption
- Possible with DiskImages framework (CDevBackingStore), but possibly hdiutil is not sufficient for setting it up.

OS X PRNG pecularities

- Uses (modified) Yarrow
- Initial entropy determined from system time
- Security Server (securityd) feeds entropy to kernel by *writing* to /dev/random
 - This data is pulled from the kernel using a debug interface (KERN_KDGETENTROPY) every 15 secs.
- Reseeds are very short (50µsec). Predictability of reseed operations.

Attack vectors?

• Found in xnu-792.13.8 and earlier:

```
/*
 * Encryption data.
 * "iv" is the "initial vector". Ideally, we want to
 * have a different one for each page we encrypt, so that
 * crackers can't find encryption patterns too easily.
 */
[...]
/*
 * No need for locking to protect swap_crypt_ctx_initialized
 * because the first use of encryption will come from the
 * pageout thread (we won't pagein before there's been a pageout)
 * and there's only one pageout thread.
 */
```

[...]

#define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */

Firewire

- DMA firewire attacks allow for reading and writing of all system memory
- Possible to own people with an iPod
- Possible to defend against with OpenFirmware or with a patched kernel (see references)
 - Platform dependent

Swap files and memory issues

- Well known issues
- Passwords are not properly scrubbed
- Encrypted swap not on by default in Tiger or even available Panther or below
 - /var/vm/swapfile{0,1,n} containing unhashed user passwords and other sensitive info
- Any ring 0 code can take your keys (remote airport key harvesting anyone?)

But surely everyone knows about encrypted swap?

(http://www.apple.com/macosx/features/filevault)

00	Security	50 x	
• • •	Show All	Q	
4	FileVault		
0	FileVault secures your home folder by encrypting its contents. It automatically encrypts and decrypts your files while you're using them.		
	WARNING: Your files will be encrypted using your login password. If you forget your login password and you don't know the master password, your data will be lost.		
	A master password is not set for this computer This is a "safety net" password. It lets you unlock any FileVault account on this computer.	Set Master Password	
	FileVault protection is off for this account. Turning on FileVault may take a while.	Turn On FileVault	
3.	Require password to wake this computer fro	m sleep or screen saver	
	For all accounts on this computer:		
	🗹 Disable automatic login		
	Require password to unlock each secure system preference		
	Log out after 60 (*) minutes of inactivity	,	
	Use secure virtual memory		
		0	

Safe Sleep

- Safe sleep is invoked when power runs critically low
- Memory contents written to /var/vm/sleepimage
- Safe sleep is careful but not careful enough...
- If encrypted swap is on:
 - contents of the sleep image will be encrypted, but key will be written out in the header (xnu-792.13.8)

Weak passwords

- Brute force dictionary attacks are possible
- We can typically get around ~200 keys/sec
 - AMD Sempr0n 3300

Special guest appearance

- Please welcome David Hulton
 - Demoing vfcrack

vfcrack working

vfcrack done

	xterm	$=$ \Box \times
2900: abs	cissae	
3000: acc	usal	
3100: adh	esion	
3200: aer	ial	
-3300: agg	eus	
3400: alb	acore	
3500: all	uvium	
3600: ame	nd .	
3700: anc	estress	
3800: ant	ebellum	
3900: aph	id	
4000: app	roximate	
4100: ari:		
4200: asc	ot.	
43UU: ast	rolog	
4400: aud	lophile	
4500: avi	ation	
4600: Daci	KSTITCH House	
4700: Dan	danna 	
48001 Dari		
4300: Dea		
touno pas	springse: 125436	
	CN VICIACK-VV.1 *	

vfcrack

- We can typically get around ~200 keys/sec with a normal laptop
- Using a compact flash sized FPGA from pico computing we can increase this dramatically
- We can achieve ~2000+ keys/sec (10x!)
- Demo!

Other fine references

- Firewire DMA attacks "All your memory are belong to us" @ http://md.hudora.de/presentations/ by Maximillian Dornseif
- Secure your Mac workshop by Angelo Laub @ http://metalab.at/wiki/SYMWorkshop
- DmgBrute by ? http://fsbsoftware.com/data/dmgBrute.c
- MDE@22c3 by Jacob Appelbaum http://events.ccc.de/congress/2005/fahrplan/att achments/714-Slides-Modern_Disk_Encryption_Systems.pdf

Code and slide release

- Free and Open Source software
- Cracking with optional FPGA acceleration (Thanks to h1kari) included as vfcrack
- Download now from: http://crypto.nsa.org/vilefault/

Thanks!

- Christan Fromme
- David Hulton
- Angelo Laub
- Jennifer Granick
- Luis Miras
- To every person at the EFF
- All the great people in and at the CCC

And thanks most of all...

Club Mate!

Questions?

